Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Acta Trop ; 247: 107018, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673134

RESUMEN

The neglected parasitosis giardiasis is one of the most common intestinal infections worldwide, affecting mainly infants and young children. Giardia duodenalis may disturb the local microbiome, leading to intestinal ecosystem disorders, and altering different processes in the host, such as the immune response. Nevertheless, the alterations promoted by G. duodenalis on the human gut microbiome have not been thoroughly investigated. Here, we characterized the gut microbiota of G. duodenalis-infected children and determine the main alterations promoted by the parasite. To do so, fecal samples of 26 infected and four uninfected children aged 2 to 6 years old were processed for High Efficiency Microarray analysis, in order to describe their bacterial and viral profiles. Then, we quantified the total bacterial population by qPCR and assessed fecal calprotectin levels, which are closely related with gut inflammation. A total of 286 bacteria's species and 17 viruses' strains were identified. Our results revealed no statistically significant differences between G. duodenalis positive and negative groups in the taxa's phyla and families. However, bacterial species diversity was increased in children infected with G. duodenalis (p < 0.05), while the total number of bacteria was decreased (p < 0.05). Considering the virome analysis, 17 different strains were identified, 88% being bacteriophages. The correlation analysis revealed an important disruption in the balance of DNA virus and bacteria within the intestinal microbiota of Giardia-positive children. Our findings constitute the first description of the gut virome of Giardia-infected children and suggest that G. duodenalis infection exerts a modulatory effect on the gut microbiome, promoting local inflammation and altering the equilibrium of the parasite-microbiota-host triad. This highlights the importance of considering polymicrobial associations and understanding the broader context of giardiasis. Overall, our study provides new insights into the complex interactions between intestinal parasites and the microbiota, which may have implications for the development of novel therapeutic interventions in the future.


Asunto(s)
Microbioma Gastrointestinal , Gastrópodos , Giardia lamblia , Giardiasis , Microbiota , Lactante , Animales , Humanos , Niño , Preescolar , Virus ADN , Giardia , Bacterias/genética , Inflamación
2.
Trop Med Infect Dis ; 8(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624343

RESUMEN

Visceral leishmaniasis (VL) is a neglected disease considered a serious public health problem, especially in endemic countries. Several studies have discovered monoxenous trypanosomatids (Leptomonas and Crithidia) in patients with VL. In different situations of leishmaniasis, investigations have examined cases of co-infection between Leishmania spp. and Crithidia spp. These coinfections have been observed in a wide range of vertebrate hosts, indicating that they are not rare. Diagnostic techniques require improvements and more robust tools to accurately detect the causative agent of VL. This study aimed to develop a real-time quantitative dye-based PCR (qPCR) assay capable of distinguishing Leishmania infantum from Crithidia-related species and to estimate the parasite load in samples of VL from humans and animals. The primer LinJ31_2420 targets an exclusive phosphatase of L. infantum; the primer Catalase_LVH60-12060_1F targets the catalase gene of Crithidia. Therefore, primers were designed to detect L. infantum and Crithidia sp. LVH60A (a novel trypanosomatid isolated from VL patients in Brazil), in samples related to VL. These primers were considered species-specific, based on sequence analysis using genome data retrieved from the TriTryp database and the genome assembling of Crithidia sp. LVH60A strain, in addition to experimental and clinical data presented herein. This novel qPCR assay was highly accurate in identifying and quantifying L. infantum and Crithidia sp. LVH60A in samples obtained experimentally (in vitro and in vivo) or collected from hosts (humans, dogs, cats, and vectors). Importantly, the screening of 62 cultured isolates from VL patients using these primers surprisingly revealed that 51 parasite cultures were PCR+ for Crithidia sp. In addition, qPCR assays identified the co-infection of L. infantum with Crithidia sp. LVH60A in two new VL cases in Brazil, confirming the suspicion of co-infection in a previously reported case of fatal VL. We believe that the species-specific genes targeted in this study can be helpful for the molecular diagnosis of VL, as well as for elucidating suspected co-infections with monoxenous-like trypanosomatids, which is a neglected fact of a neglected disease.

4.
Biomedicines ; 12(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275373

RESUMEN

The polymorphism of cutaneous leishmaniasis (CL) complicates diagnosis in health care services because lesions may be confused with other dermatoses such as sporotrichosis, paracocidiocomycosis, and venous insufficiency. Automated identification of skin diseases based on deep learning (DL) has been applied to assist diagnosis. In this study, we evaluated the performance of AlexNet, a DL algorithm, to identify pictures of CL lesions in patients from Midwest Brazil. We used a set of 2458 pictures (up to 10 of each lesion) obtained from patients treated between 2015 and 2022 in the Leishmaniasis Clinic at the University Hospital of Brasilia. We divided the picture database into training (80%), internal validation (10%), and testing sets (10%), and trained and tested AlexNet to identify pictures of CL lesions. We performed three simulations and trained AlexNet to differentiate CL from 26 other dermatoses (e.g., chromomycosis, ecthyma, venous insufficiency). We obtained an average accuracy of 95.04% (Confidence Interval 95%: 93.81-96.04), indicating an excellent performance of AlexNet in identifying pictures of CL lesions. We conclude that automated CL identification using AlexNet has the potential to assist clinicians in diagnosing skin lesions. These results contribute to the development of a mobile application to assist in the diagnosis of CL in health care services.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36479576

RESUMEN

Triatoma costalimai is a little-known triatomine-bug species whose role as a vector of Chagas disease remains poorly understood. To address this gap, we conducted a comprehensive review of the literature and assessed the evidence base from a public-health perspective. We found 89 individual documents/resources with information about T. costalimai. DNA-sequence and cytogenetic data indicate that T. costalimai belongs, together with Triatoma jatai, in a distinct clade within the 'pseudomaculata group' of South American Triatoma. Triatoma costalimai is probably a narrow endemic of the Cerrado on the upper Tocantins River Basin and associated ranges/plateaus; there, the species thrives in the sandstone/limestone outcrops typical of the "Cerrado rupestre" (rocky-soil savanna) and "mata seca decídua calcária" (limestone-soil dry forest) phytophysiognomies. Wild T. costalimai appear to feed on whatever vertebrates are available in rocky outcrops, with lizards and rodents being most common. There is persuasive evidence that house invasion/infestation by T. costalimai has increased in frequency since the 1990s. The bugs often carry Trypanosoma cruzi, often defecate while feeding, have high fecundity/fertility, and, under overtly favorable conditions, can produce two generations per year. Current knowledge suggests that T. costalimai can transmit human Chagas disease in the upper Tocantins Basin; control-surveillance systems should 'tag' the species as a potentially important local vector in the Brazilian states of Goiás and Tocantins. Further research is needed to clarify (i) the drivers and dynamics of house invasion, infestation, and reinfestation by T. costalimai and (ii) the genetic structuring and vector capacity of the species, including its wild and non-wild populations.

6.
Parasit Vectors ; 15(1): 325, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104804

RESUMEN

BACKGROUND: Chagas disease (American trypanosomiasis) is an important neglected tropical illness, which has the flagellate protozoan Trypanosoma cruzi as etiological agent and blood-feeding insects of the Triatominae subfamily as vectors. Despite its importance for disease epidemiology, field studies targeting microgeographic dispersal of triatomines in endemic areas are rare. The ability wingless nymphs have to move (crawl) within peridomestic settings is a key component regarding the design and development of rational control strategies. METHODS: We double-marked Triatoma sordida fourth-instar nymphs (N4) with a reliable fluorescent dye and a trace element. This new methodology allowed us to simultaneously evaluate (i) nymph dispersal and (ii) the effectiveness of copper (Cu), chromium (Cr), and cadmium (Cd) trace elements as potential new markers. In the mark-release-recapture (MRR) experiment, 390 T. sordida N4 were released in the peridomicile of a single rural household, 130 individuals at each of three release points, at distances of 2, 5, and 10 m from the chicken coop (CC) and 27, 32, and 35 m away from the horse corral (HC). All specimens were double marked (Cu/blue, Cr/orange, Cd/green). Recaptures occurred in two intervals: 1-3 days and 15-17 days after release. RESULTS: Specimens were successfully recaptured at all distances up to 10 m. A total of 19, 23, and 10 specimens were able to disperse 2, 5, and 10 m, respectively, to reach the CC. No insects were recaptured at the HC. Of the three analyte/paint combinations tested, Cr/orange gave the most promising results; Cu/blue marker and Cd/green marker performed very poorly with only 4/19 and 0/10 analyte/paint ratios, respectively. CONCLUSIONS: Triatoma sordida N4 could cover a distance of 10 m in 17 days. This indicates that nymphs seem to have a reduced dispersal capability compared to adults. Ninety-one percent of the 22 recaptured orange-marked nymphs were still Cr positive after the 17-day period evaluated. This makes this analyte a good candidate for future investigations that will apply this marking method in MRR studies.


Asunto(s)
Enfermedad de Chagas , Oligoelementos , Triatoma , Animales , Brasil , Cadmio , Enfermedad de Chagas/epidemiología , Pollos , Caballos , Ninfa
7.
Rev Soc Bras Med Trop ; 55: e07322021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35894404

RESUMEN

BACKGROUND: Neglected tropical diseases are a growing threat to global health, and endemic Chagas disease has emerged as one of the most important health problems in America. The main strategy to prevent Trypanosoma cruzi transmission is chemical control of vectors. This study presents a descriptive analysis of synanthropic triatomines before and after the implementation of a vector-control program in Bahia, Brazil. METHODS: Descriptive analysis and geospatial statistics were performed on triatomine data, (1) the relative abundance and (2) proportional spatial distribution, from Bahia during two periods: (A) 1957 to 1971 and (B) 2006 to 2019. RESULTS: We observed a decrease in the relative abundance of Panstrongylus megistus (A: n=22.032, 61.9%; B: n=1.842, 1.0%) and Triatoma infestans (A: n=1.310, 3.7%; B: n=763, 0.43%), as well as an increase in the relative abundance of T. sordida (A: n=8.314, 23.4%, B: n=146.901, 81.6%) and T. pseudomaculata (A: n=894, 2.5%, B: n=16.717, 9.3%). CONCLUSIONS: Our results indicate a clear reduction in the occurrence of P. megistus and T. infestans (last record in 2015) and an increase in the relative abundance and geographical distribution of T. sordida and T. pseudomaculata after 40 years of the vector-control program. The high frequency of other triatomine species in the municipalities of the state of Bahia and their abundance in recent years highlight the need to reinforce permanent entomological surveillance actions to prevent Chagas disease.


Asunto(s)
Enfermedad de Chagas , Triatoma , Triatominae , Trypanosoma cruzi , Animales , Brasil/epidemiología , Humanos , Insectos Vectores , Enfermedades Desatendidas
9.
Rev. Soc. Bras. Med. Trop ; 55: e0732, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1387542

RESUMEN

ABSTRACT Background: Neglected tropical diseases are a growing threat to global health, and endemic Chagas disease has emerged as one of the most important health problems in America. The main strategy to prevent Trypanosoma cruzi transmission is chemical control of vectors. This study presents a descriptive analysis of synanthropic triatomines before and after the implementation of a vector-control program in Bahia, Brazil. Methods: Descriptive analysis and geospatial statistics were performed on triatomine data, (1) the relative abundance and (2) proportional spatial distribution, from Bahia during two periods: (A) 1957 to 1971 and (B) 2006 to 2019. Results: We observed a decrease in the relative abundance of Panstrongylus megistus (A: n=22.032, 61.9%; B: n=1.842, 1.0%) and Triatoma infestans (A: n=1.310, 3.7%; B: n=763, 0.43%), as well as an increase in the relative abundance of T. sordida (A: n=8.314, 23.4%, B: n=146.901, 81.6%) and T. pseudomaculata (A: n=894, 2.5%, B: n=16.717, 9.3%). Conclusions: Our results indicate a clear reduction in the occurrence of P. megistus and T. infestans (last record in 2015) and an increase in the relative abundance and geographical distribution of T. sordida and T. pseudomaculata after 40 years of the vector-control program. The high frequency of other triatomine species in the municipalities of the state of Bahia and their abundance in recent years highlight the need to reinforce permanent entomological surveillance actions to prevent Chagas disease.

10.
Parasit Vectors ; 14(1): 492, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563255

RESUMEN

BACKGROUND: Triatomine bugs transmit Chagas disease across Latin America, where vector control-surveillance is increasingly decentralized. Locally run systems often deal with highly diverse native-vector faunas-plus, in some areas, domestic populations of non-native species. Flexible entomological-risk indicators that cover native and non-native vectors and can support local decision-making are therefore needed. METHODS: We present a local-scale entomological-risk score ("TriatoScore") that leverages and builds upon information on the ecology-behavior and distribution-biogeography of individual triatomine bug species. We illustrate our approach by calculating TriatoScores for the 417 municipalities of Bahia state, Brazil. For this, we (i) listed all triatomine bug species recorded statewide; (ii) derived a "species relevance score" reflecting whether each species is native/non-native and, if native, whether/how often it invades/colonizes dwellings; (iii) mapped each species' presence by municipality; (iv) for native vectors, weighted presence by the proportion of municipal territory within ecoregions occupied by each species; (v) multiplied "species relevance score" × "weighted presence" to get species-specific "weighted scores"; and (vi) summed "weighted scores" across species to get municipal TriatoScores. Using standardized TriatoScores, we then grouped municipalities into high/moderate/low entomological-risk strata. RESULTS: TriatoScores were higher in municipalities dominated by dry-to-semiarid ecoregions than in those dominated by savanna-grassland or, especially, moist-forest ecoregions. Bahia's native triatomines can maintain high to moderate risk of vector-borne Chagas disease in 318 (76.3%) municipalities. Historical elimination of Triatoma infestans from 125 municipalities reduced TriatoScores by ~ 27% (range, 20-44%); eight municipalities reported T. infestans since Bahia was certified free of Trypanosoma cruzi transmission by this non-native species. Entomological-risk strata based on TriatoScores agreed well with Bahia's official disease-risk strata, but TriatoScores suggest that the official classification likely underestimates risk in 42 municipalities. Of 152 municipalities failing to report triatomines in 2006-2019, two and 71 had TriatoScores corresponding to, respectively, high and moderate entomological risk. CONCLUSIONS: TriatoScore can help control-surveillance managers to flexibly assess and stratify the entomological risk of Chagas disease at operationally relevant scales. Integrating eco-epidemiological, demographic, socioeconomic, or operational data (on, e.g., local-scale dwelling-infestation or vector-infection frequencies, land-use change and urbanization, housing conditions, poverty, or the functioning of control-surveillance systems) is also straightforward. TriatoScore may thus become a useful addition to the triatomine bug control-surveillance toolbox.


Asunto(s)
Enfermedad de Chagas/transmisión , Insectos Vectores/fisiología , Triatominae/fisiología , Trypanosoma cruzi/fisiología , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Entomología , Ambiente , Calidad de la Vivienda , Humanos , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Factores de Riesgo , Triatominae/clasificación , Triatominae/parasitología
11.
PLoS One ; 16(5): e0252071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34015050

RESUMEN

Attalea palms provide primary habitat to Rhodnius spp., vectors of Trypanosoma cruzi. Flying from palms, these blood-sucking bugs often invade houses and can infect people directly or via food contamination. Chagas disease (CD) risk may therefore increase when Attalea palms thrive near houses. For example, Attalea dominate many deforested landscapes of eastern Amazonia, where acute-CD outbreaks are disturbingly frequent. Despite this possible link between deforestation and CD risk, the population-level responses of Amazonian Attalea and their resident Rhodnius to anthropogenic landscape disturbance remain largely uncharted. We studied adult Attalea palms in old-growth forest (OGF), young secondary forest (YSF), and cattle pasture (CP) in two localities of eastern Amazonia. We recorded 1856 Attalea along 10 transects (153.6 ha), and detected infestation by Rhodnius spp. in 18 of 280 systematically-sampled palms (33 bugs caught). Distance-sampling models suggest that, relative to OGF, adult Attalea density declined by 70-80% in CP and then recovered in YSF. Site-occupancy models estimate a strong positive effect of deforestation on palm-infestation odds (ßCP-infestation = 4.82±1.14 SE), with a moderate decline in recovering YSF (ßYSF-infestation = 2.66±1.10 SE). Similarly, N-mixture models suggest that, relative to OGF, mean vector density sharply increased in CP palms (ßCP-density = 3.20±0.62 SE) and then tapered in YSF (ßYSF-density = 1.61±0.76 SE). Together, these results indicate that disturbed landscapes may support between ~2.5 (YSF) and ~5.1 (CP) times more Attalea-dwelling Rhodnius spp. per unit area than OGF. We provide evidence that deforestation may favor palm-dwelling CD vectors in eastern Amazonia. Importantly, our landscape-disturbance effect estimates explicitly take account of (i) imperfect palm and bug detection and (ii) the uncertainties about infestation and vector density arising from sparse bug data. These results suggest that incorporating landscape-disturbance metrics into the spatial stratification of transmission risk could help enhance CD surveillance and prevention in Amazonia.


Asunto(s)
Enfermedad de Chagas/parasitología , Insectos Vectores/parasitología , Rhodnius/patogenicidad , Trypanosoma cruzi/patogenicidad , Animales , Ecosistema
12.
PLoS One ; 16(4): e0248628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886550

RESUMEN

Correct identification of triatomine bugs is crucial for Chagas disease surveillance, yet available taxonomic keys are outdated, incomplete, or both. Here we present TriatoDex, an Android app-based pictorial, annotated, polytomous key to the Triatominae. TriatoDex was developed using Android Studio and tested by 27 Brazilian users. Each user received a box with pinned, number-labeled, adult triatomines (33 species in total) and was asked to identify each bug to the species level. We used generalized linear mixed models (with user- and species-ID random effects) and information-theoretic model evaluation/averaging to investigate TriatoDex performance. TriatoDex encompasses 79 questions and 554 images of the 150 triatomine-bug species described worldwide up to 2017. TriatoDex-based identification was correct in 78.9% of 824 tasks. TriatoDex performed better in the hands of trained taxonomists (93.3% vs. 72.7% correct identifications; model-averaged, adjusted odds ratio 5.96, 95% confidence interval [CI] 3.09-11.48). In contrast, user age, gender, primary job (including academic research/teaching or disease surveillance), workplace (including universities, a reference laboratory for triatomine-bug taxonomy, or disease-surveillance units), and basic training (from high school to biology) all had negligible effects on TriatoDex performance. Our analyses also suggest that, as TriatoDex results accrue to cover more taxa, they may help pinpoint triatomine-bug species that are consistently harder (than average) to identify. In a pilot comparison with a standard, printed key (370 tasks by seven users), TriatoDex performed similarly (84.5% correct assignments, CI 68.9-94.0%), but identification was 32.8% (CI 24.7-40.1%) faster on average-for a mean absolute saving of ~2.3 minutes per bug-identification task. TriatoDex holds much promise as a handy, flexible, and reliable tool for triatomine-bug identification; an updated iOS/Android version is under development. We expect that, with continuous refinement derived from evolving knowledge and user feedback, TriatoDex will substantially help strengthen both entomological surveillance and research on Chagas disease vectors.


Asunto(s)
Enfermedad de Chagas/epidemiología , Insectos Vectores , Aplicaciones Móviles , Triatominae , Adulto , Animales , Brasil/epidemiología , Enfermedad de Chagas/transmisión , Femenino , Humanos , Insectos Vectores/anatomía & histología , Insectos Vectores/clasificación , Masculino , Persona de Mediana Edad , Triatominae/anatomía & histología , Triatominae/clasificación , Adulto Joven
13.
Rev. Soc. Bras. Med. Trop ; 54: e00282020, 2021. tab, graf
Artículo en Inglés | Sec. Est. Saúde SP, Coleciona SUS, LILACS | ID: biblio-1143882

RESUMEN

Abstract INTRODUCTION: We aimed to study intraspecific variation in Triatoma costalimai, a potential vector of Chagas disease present in Brazil and Bolivia. METHODS: We analyzed phenotypic (connexivum color patterns, wing morphometrics) and genetic variation (16S mtDNA) of three Brazilian T. costalimai populations. We compared 16S sequences with those of putative Bolivian T. costalimai and its sister species, T. jatai. RESULTS: Brazilian populations had different connexivum color patterns and forewing shapes. A 16S mtDNA haplotype network showed a clear separation of Brazilian T. costalimai from both T. jatai and Bolivian T. costalimai. CONCLUSIONS: We report considerable variability in T. costalimai populations.


Asunto(s)
Animales , Triatoma/genética , Enfermedad de Chagas , Variación Genética/genética , Bolivia , Brasil , Insectos Vectores/genética
14.
Rev Soc Bras Med Trop ; 54: e00282020, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33338103

RESUMEN

INTRODUCTION: We aimed to study intraspecific variation in Triatoma costalimai, a potential vector of Chagas disease present in Brazil and Bolivia. METHODS: We analyzed phenotypic (connexivum color patterns, wing morphometrics) and genetic variation (16S mtDNA) of three Brazilian T. costalimai populations. We compared 16S sequences with those of putative Bolivian T. costalimai and its sister species, T. jatai. RESULTS: Brazilian populations had different connexivum color patterns and forewing shapes. A 16S mtDNA haplotype network showed a clear separation of Brazilian T. costalimai from both T. jatai and Bolivian T. costalimai. CONCLUSIONS: We report considerable variability in T. costalimai populations.


Asunto(s)
Enfermedad de Chagas , Triatoma , Animales , Bolivia , Brasil , Variación Genética/genética , Insectos Vectores/genética , Triatoma/genética
15.
Parasit Vectors ; 13(1): 352, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665032

RESUMEN

BACKGROUND: Aedes aegypti and Culex quinquefasciatus are the main urban vectors of arthropod-borne viruses causing human disease, including dengue, Zika, or West Nile. Although key to disease prevention, urban-mosquito control has met only limited success. Alternative vector-control tactics are therefore being developed and tested, often using entomological endpoints to measure impact. Here, we test one promising alternative and assess how three such endpoints perform at measuring its effects. METHODS: We conducted a 16-month, two-arm, cluster-randomized controlled trial (CRCT) of mosquito-disseminated pyriproxyfen (MD-PPF) in central-western Brazil. We used three entomological endpoints: adult-mosquito density as directly measured by active aspiration of adult mosquitoes, and egg-trap-based indices of female Aedes presence (proportion of positive egg-traps) and possibly abundance (number of eggs per egg-trap). Using generalized linear mixed models, we estimated MD-PPF effects on these endpoints while accounting for the non-independence of repeated observations and for intervention-unrelated sources of spatial-temporal variation. RESULTS: On average, MD-PPF reduced adult-mosquito density by 66.3% (95% confidence interval, 95% CI: 47.3-78.4%); Cx. quinquefasciatus density fell by 55.5% (95% CI: 21.1-74.8%), and Ae. aegypti density by 60.0% (95% CI: 28.7-77.5%). In contrast, MD-PPF had no measurable effect on either Aedes egg counts or egg-trap positivity, both of which decreased somewhat in the intervention cluster but also in the control cluster. Egg-trap data, therefore, failed to reflect the 60.0% mean reduction of adult Aedes density associated with MD-PPF deployment. CONCLUSIONS: Our results suggest that the widely used egg-trap-based monitoring may poorly measure the impact of Aedes control; even if more costly, direct monitoring of the adult mosquito population is likely to provide a much more realistic and informative picture of intervention effects. In our CRCT, MD-PPF reduced adult-mosquito density by 66.3% in a medium-sized, spatially non-isolated, tropical urban neighborhood. Broader-scale trials will be necessary to measure MD-PPF impact on arboviral-disease transmission.


Asunto(s)
Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Piridinas/farmacología , Aedes/efectos de los fármacos , Animales , Brasil , Culex/efectos de los fármacos , Humanos , Insecticidas/farmacología
16.
Vet Med Sci ; 6(2): 248-256, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31743623

RESUMEN

BACKGROUND: Conservation projects in zoos may involve translocation of captive animals, which may lead to pathogen spread. Neotropical mammals are important hosts of Trypanosoma cruzi and Leishmania spp. the etiological agents of Chagas disease and Leishmaniasis respectively. Studies of trypanosomatid-infected mammals and vectors (triatomines and sandflies) in zoos are important for the establishment of surveillance and control measures. OBJECTIVES: We investigated trypanosomatid infections in captive wild mammals, triatomines and sandflies at the Brasília Zoo. METHODS: We collected triatomines during active bimonthly surveys, sampled sandflies using light-traps and obtained blood samples from 74 mammals between 2016 and 2017. We used quantitative PCR to detect trypanosomatids in vectors and mammals. RESULTS: We found a colony of 19 Panstrongylus megistus in the porcupine unit and detected T. cruzi infections in five bugs. We captured 17 sandflies of four species including Nyssomyia whitmani and Lutzomyia longipalpis, but no Leishmania infection was detected. qPCR detected 50 T. cruzi-infected mammals belonging to 24 species and five groups of mammals (Carnivora, Cetartiodactyla, Perissodactyla, Pilosa and Primates); Leishmania DNA was detected in 23 mammals from 15 species, mainly carnivores. We detected trypanosomatid infections in 11 mammals born at the Brasília Zoo. CONCLUSIONS: Our results suggest vector-borne transmission of T. cruzi among maned wolves; measures to reduce the risk of new infections should therefore be taken. We also report sandfly presence and Leishmania-infected mammals at the Brasília Zoo. Translocation of wild mammals in and out of the Brasília Zoo should consider the risk of T. cruzi and Leishmania spread.


Asunto(s)
Enfermedad de Chagas/veterinaria , Insectos Vectores/parasitología , Leishmania/aislamiento & purificación , Leishmaniasis/veterinaria , Mamíferos , Trypanosoma cruzi/aislamiento & purificación , Animales , Animales de Zoológico , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Leishmaniasis/epidemiología , Leishmaniasis/transmisión , Panstrongylus/parasitología , Psychodidae/parasitología
17.
Parasit Vectors ; 12(1): 604, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31878960

RESUMEN

BACKGROUND: The identification of Trypanosoma cruzi and blood-meal sources in synanthropic triatomines is important to assess the potential risk of Chagas disease transmission. We identified T. cruzi infection and blood-meal sources of triatomines caught in and around houses in the state of Bahia, northeastern Brazil, and mapped the occurrence of infected triatomines that fed on humans and domestic animals. METHODS: Triatominae bugs were manually captured by trained agents from the Epidemiologic Surveillance team of Bahia State Health Service between 2013 and 2014. We applied conventional PCR to detect T. cruzi and blood-meal sources (dog, cat, human and bird) in a randomized sample of triatomines. We mapped triatomine distribution and analyzed vector hotspots with kernel density spatial analysis. RESULTS: In total, 5906 triatomines comprising 15 species were collected from 127 out of 417 municipalities in Bahia. The molecular analyses of 695 triatomines revealed a ~10% T. cruzi infection rate, which was highest in the T. brasiliensis species complex. Most bugs were found to have fed on birds (74.2%), and other blood-meal sources included dogs (6%), cats (0.6%) and humans (1%). Trypanosoma cruzi-infected triatomines that fed on humans were detected inside houses. Spatial analysis showed a wide distribution of T. cruzi-infected triatomines throughout Bahia; triatomines that fed on dogs, humans, and cats were observed mainly in the northeast region. CONCLUSIONS: Synanthropic triatomines have a wide distribution and maintain the potential risk of T. cruzi transmission to humans and domestic animals in Bahia. Ten species were recorded inside houses, mainly Triatoma sordida, T. pseudomaculata, and the T. brasiliensis species complex. Molecular and spatial analysis are useful to reveal T. cruzi infection and blood-meal sources in synanthropic triatomines, identifying areas with ongoing threat for parasite transmission and improving entomological surveillance strategies.


Asunto(s)
Insectos Vectores/parasitología , Triatominae/parasitología , Trypanosoma cruzi/aislamiento & purificación , Animales , Animales Domésticos/parasitología , Brasil , Gatos , Perros , Conducta Alimentaria , Humanos , Insectos Vectores/clasificación , Triatominae/clasificación , Triatominae/fisiología , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/genética
18.
Saúde debate ; 43(spe2): 147-154, nov. 2019.
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1059037

RESUMEN

RESUMO Deep Learning é uma técnica de aprendizado de máquina na qual o programa computacional aprende padrões diretamente a partir de imagens classificadas previamente. O presente ensaio objetivou apresentar essa técnica e algumas de suas aplicações para diagnóstico de doenças e identificação de insetos vetores para incentivar profissionais da saúde que não tenham conhecimento aprofundado em informática e que desejem utilizar a ferramenta para realizar análises automatizadas. Deep Learning tem sido aplicado para diagnóstico de câncer, fibrose cardíaca, tuberculose, detecção de parasitos como Plasmodium e Leishmania e ainda para identificação de insetos vetores. Na Universidade de Brasília, a técnica tem sido aplicada para desenvolver uma ferramenta para identificar lesões ulceradas de leishmaniose em diagnóstico diferencial e para detectar Leishmania em lâminas de estudos histopatológicos. Além disso, Deep Learning tem sido usado para identificar as espécies de vetores da doença de Chagas - o que é importante para auxiliar na vigilância epidemiológica. O uso da tecnologia envolve desafios éticos e procedimentais que são discutidos no presente ensaio. O ensaio aponta perspectivas de desenvolvimento de aplicativos que auxiliem os profissionais de saúde no diagnóstico de Leishmaniose e de vetores da doença de Chagas, o que vai ao encontro dos objetivos da pesquisa translacional.


ABSTRACT Deep Learning is a machine learning technique in which the computational algorithm learns patterns directly from images previously classified. The present essay aims to show some of its applications for clinical diagnosis and identification of insect vectors to encourage health professionals who do not have deep knowledge of computer science and who wish to use the tool to perform automated analyzes. Deep Learning has been applied to the diagnosis of cancer, cardiac fibrosis, tuberculosis, detection of parasites such as Plasmodium and Leishmania, and to identify insect vectors. At the University of Brasília, Deep Learning has been used to develop a tool to identify ulcers caused by leishmaniasis, as well as to detect Leishmania parasites. Moreover, Deep Learning was applied to identify the species of vectors of Chagas disease, an important contribution to the epidemiological surveillance of the disease. The use of Deep Learning involves some ethical and procedural issues that are discussed in this paper. Finally, the essay points out perspectives of development of apps that assist health professionals in the diagnosis of Leishmaniasis and Chagas disease vectors, which meets the goals of translational research.

20.
J Med Entomol ; 56(5): 1404-1410, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31121052

RESUMEN

Vector-borne Chagas disease is endemic to the Americas and imposes significant economic and social burdens on public health. In a previous contribution, we presented an automated identification system that was able to discriminate among 12 Mexican and 39 Brazilian triatomine (Hemiptera: Reduviidae) species from digital images. To explore the same data more deeply using machine-learning approaches, hoping for improvements in classification, we employed TensorFlow, an open-source software platform for a deep learning algorithm. We trained the algorithm based on 405 images for Mexican triatomine species and 1,584 images for Brazilian triatomine species. Our system achieved 83.0 and 86.7% correct identification rates across all Mexican and Brazilian species, respectively, an improvement over comparable rates from statistical classifiers (80.3 and 83.9%, respectively). Incorporating distributional information to reduce numbers of species in analyses improved identification rates to 95.8% for Mexican species and 98.9% for Brazilian species. Given the 'taxonomic impediment' and difficulties in providing entomological expertise necessary to control such diseases, automating the identification process offers a potential partial solution to crucial challenges.


Asunto(s)
Clasificación/métodos , Aprendizaje Profundo , Insectos Vectores/clasificación , Triatominae/clasificación , Animales , Brasil , Enfermedad de Chagas/transmisión , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...